Synthesis, characterization and photocatalytic activity of CaZrO\textsubscript{3} - SiO\textsubscript{2} nanocomposite for the decolorization of indigo carmine dye

Neda Kermania, Seyed Saeed Mirzaeeb, Mohammad Ebrahim Olyac, Sayyed Mohammad Javad Mirzaeid,*

aChemistry Department, Islamic Azad University Tehran North Branch, Tehran, Iran, email: Kermani_neda@yahoo.com (N. Kermani)
bDepartment of Ceramic, Materials and Energy Research Centre, Karaj, Iran, email: s_mirzaee81@yahoo.com (S.S. Mirzaee)
cDepartment of environmental research, Institute for colour science & technology, Tehran, Iran, email: me.olya@gmail.com (M.E. Olya)
dDepartment of Water Engineering, Faculty of Agriculture and Animal Sciences, University of Torbat-e Jam, Torbat-e Jam, Iran, Tel. 989155016090, email: javadm_61@yahoo.com (S.M.J. Mirzaei)

Received 8 October 2017; Accepted 6 August 2018

\textbf{A B S T R A C T}

The photocatalytic decolorization of indigo carmine (acid blue 74) in an oxidation process was studied using a silica-calcium zirconate (CZS) powder as a semiconductor photocatalyst in a batch reactor equipped with a 15W low-pressure mercury lamp. The effects of various influential parameters including initial dye concentration, photocatalyst dose, pH, temperature and stirring rate on the dye decolorization were also optimized. The optimum value of initial dye concentration, photocatalyst concentration and stirring rate were 5 ppm, 0.04 g/L, and 600 rpm, respectively. Furthermore, the maximum decolorization was observed at the pH of 3. X-ray diffraction (XRD) and infrared spectra (FT-IR) techniques were used to confirm the formation of photocatalyst. The particle size and specific surface area of photocatalyst were determined by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) theory. UV-Vis spectroscopy was employed to evaluate the dye degradation and LC-MS technique was used to evaluate the formation of the intermediate compounds. The results indicate that silica-calcium zirconate nanocomposite is suitable for the degradation of organic pollutants from wastewater.

\textit{Keywords:} Photocatalysis; Decolorization; Acid Blue 74; Calcium zirconate; Textile industry wastewater