

A comparison study of granular activated carbon modification by FeCl₃ under the acidic and basic condition for arsenic removal from water

Mokhtar Mahdavi^{a,b}, Amir Hossein Mahvi^c, Ali Fatehizadeh^d, Mohsen Sadani^e, Behzad Shahmoradi^f, Afshin Ebrahimi^{d,g,*}

^aEnvironmental Health Engineering and Student Research Committee, Saveh University of Medical Sciences, Saveh, Iran, email: ShamaLL6@yahoo.com

^bSocial Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran

^eCenter for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Science, Tehran, Iran, email: ahmahvi@yahoo.com

^dEnvironment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease,

Isfahan University of Medical Sciences, Isfahan, Iran

^eDepartment of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran ^fEnvironmental Health Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran, email: Iran.bshahmorady@gmail.com ⁸Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran, Tel. +98 3 137923280; email: a_ebrahimi@hlth.mui.ac.ir

Received 26 January 2018; Accepted 22 September 2018

ABSTRACT

The present study deals with the effect of two different conditions for modification of raw granular activated carbon (GAC) with FeCl₃ under acidic granular activated carbon (AGAC) and basic granular activated carbon (BGAC) conditions for removal of arsenic – As(V) – from aqueous solution. X-ray diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller (BET) were used for structural properties. Obtained images show that for raw GAC most of the peaks are related to SiO₂ and graphite, but, for AGAC related to Fe₂O₃, Fe₃O₄, and SiO₂, and for BGAC related to Fe₃O₄ and hydrogen aluminum silicate. Surface area and total pore volume of raw GAC > AGAC > BGAC. Kinetics study for arsenic removal by raw GAC and BGAC obeyed pseudo-first-order model, but, AGAC obeyed pseudo-second-order model. Isotherm study showed that raw GAC has a good fit with Langmuir model, and AGAC and BGAC have a good fit with Freundlich model. The adsorption capacity of AGAC, BGAC, and raw GAC (As(V) concentration = 0.3 mg/L) was 22.7, 18.33, and 14.35 mg/g, respectively. It was concluded that modified raw GAC under the acidic condition had better than basic condition.

Keywords: GAC; Modified GAC; Arsenic removal; Adsorption; Iron oxide/GAC

* Corresponding author.

1944-3994/1944-3986 ${\ensuremath{\mathbb C}}$ 2019 Desalination Publications. All rights reserved.