

The role of fly ash in solar photocatalytic water treatment

Vanja Gilja^a, Zvonimir Katančić^a, Vilko Mandić^a, Igor Peternel^b, Hrvoje Kušić^{a,*}, Zlata Hrnjak-Murgić^{a,**}

^aFaculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, Zagreb, Croatia, email: vgilja@fkit.hr (V. Gilja), katancic@fkit.hr (Z. Katančić), vmandic@fkit.hr (V. Mandić), Tel. +385 1 4597 123, Fax +385 1 4597 143, email: hkusic@fkit.hr (H. Kušić), Tel. +385 1 4597 120, Fax +385 1 4597 142, email: zhrnjak@fkit.hr (Z. Hrnjak-Murgić) ^bKarlovac University of Applied Sciences, Trg Josipa Jurja Strossmayera 9, Karlovac, Croatia, email: ipeternel@vuka.hr (I. Peternel)

Received 7 May 2018; Accepted 26 October 2018

ABSTRACT

To investigate the possibility of using waste material in the water purification, fly ash (FA0) was modified and built-in within composite TiO_2 -FA. In that purpose, titanium dioxide (TiO_2) was prepared *in-situ* by sol–gel synthesis in the presence of FA. The morphology, surface, structure and optical properties of obtained composite were compared to those of pure TiO_2 , synthetized by the same procedure as TiO_2 -FA. Both photo catalysts were then used in solar driven treatment of reactive azo dye Reactive Red 45 (RR45), exploring the influence of following process parameters: initial pH, photo catalyst dosage and initial RR45 concentrations, on the overall effectiveness. The reusability of TiO_2 -FA and TiO_2 has also been explored. Modification of FA0 significantly increased its surface area. Synthetized TiO_2 was highly crystalline and of anatase phase only, regardless the presence of FA. Band gap of TiO_2 -FA is slightly lower than that of TiO_2 , indicating that composite might have higher activity under solar irradiation. However, it was found that TiO_2 is more effective, except at extreme conditions tested (the lowest pH and highest photo catalyst dosage), presumably because composite had 16 wt% less photo catalytically active component. On the other hand, composite underwent easier separation after the treatment that facilitated its reuse more efficiently.

Keywords: Fly ash; Material synthesis and characterization; TiO₂-based composite; Solar photo catalysis; Water treatment

*Corresponding author.