

Efficient removal of Pb²⁺ from water using Fe₃O₄@UiO-66-NH₂ core/shell nanocomposite

Sheng Feng*, Shuguang Liu, Shanshan Feng*, Runbai Wang

School of Environmental and Safety Engineering, Changzhou University, Jiangsu 213164, China, Tel. +86-519-86330080; emails: shfeng@cczu.edu.cn (Sheng Feng), fss728@163.com (Shanshan Feng), shguangliu@163.com (Shuguang Liu), ruibaiwang@163.com (Runbai Wang)

Received 12 July 2018; Accepted 10 January 2019

ABSTRACT

Using solvothermal method to combine Amino-functionalized metal–organic frameworks (MOFs) with magnetite (Fe₃O₄ NPS), and the generated magnetic nanocomposite dispersed in MOFs precursor in a row, generating two assembly cycles Fe₃O₄@UiO-66-NH₂ core/shell nanocomposite for efficient removal of Pb²⁺ from aqueous solution. The nanocomposite was characterized by X-ray diffraction (XRD), fourier transform infrared spectra (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and vibrating sample magnetometer (VSM). Compare the adsorption performance of primary and secondary growth. Batch experiments show that the secondary magnetization of Fe₃O₄@UiO-66-NH₂-2 core/shell nanocomposite has a good removal effect on Pb²⁺. The prepared Fe₃O₄@UiO-66-NH₂-2 core/shell nanocomposite showed excellent efficient removal of Pb²⁺ with high adsorption capacity (q_c : 19.8 mg·g⁻¹, c_o : 5 mg·L⁻¹) and rapid separation from water by an external magnetic field because of the efficient combination of the advantages of UiO-66-NH₂-2 core/shell nanocomposite by the coordination interaction between amino (-NH₂) and Pb²⁺. These results proved that the preparation of Fe₃O₄@UiO-66-NH₂-2 core/shell nanity confirmed by the coordination interaction between amino (-NH₂) and Pb²⁺.

Keywords: UiO-66-NH₂; Fe₃O₄ NPS; Adsorption; Lead ion; Magnetic separation

* Corresponding authors.

1944-3994/1944-3986 © 2019 Desalination Publications. All rights reserved.