Adsorption of cationic and anionic organic dyes on SiO₂/CuO composite

Mahmoud Sunjuk^a, Husam Arar^b, Wadah F. Mahmoud^c, Majdi Majdalawi^b, Monzer M. Krishan^d, Yousef Abu Salha^c, Bassam El-Eswed^{b,*}

^aChemistry Department, Faculty of Science, The Hashemite University, Zarqa, Jordan, email: Mahmoud.Sunjuk@hu.edu.jo ^bZarqa College, Al-Balqa Applied University, P.O. Box: 313, Zarqa 13110, Jordan, emails: bassameswed@bau.edu.jo (B. El-Eswed), husamarar@yahoo.com (H. Arar)

^cGeology Department, The University of Jordan, Amman 11942, Jordan, emails: w.mahmoud@ju.edu.jo (W.F. Mahmoud), abusalhayama@yahoo.com (Y.A. Salha)

^dDepartment of Mechatronics Engineering, Al-Balq'a Applied University, Amman 11134, Jordan, email: drkrishan@bau.edu.jo (M.M. Krishan)

Received 27 January 2019; Accepted 13 July 2019

ABSTRACT

Silica (SiO₂) is one of the most abundant minerals in soils and sediments. Copper oxide (CuO) is a low-cost material with an excellent antimicrobial property. In the present work, a composite comprising silica and copper oxide (SiO,/CuO) was synthesized by dissolution of SiO, (cristobalite) in 6.0 M NaOH followed by deposition of dissolved SiO, on CuO. The composite was characterized using XRF, XRD, SEM and FTIR techniques. The XRF analysis indicated that SiO_/CuO contains 79.42 wt% CuO and 14.36 wt% SiO,. Both XRD and SEM analysis revealed that silica exists in SiO,/CuO as amorphous agglomerates. The Si–O–Si stretching at 1,076 cm⁻¹ in the FTIR spectrum of SiO, was shifted to 1,033 cm⁻¹ in the case of SiO,/CuO due to dissolution of SiO, and interaction with CuO. Two types of organic dyes, namely, cationic (methylene blue [MB], crystal violet [CV]) and anionic dyes (acid blue 29 [AB], Congo red [CR]) were tested for their adsorption on SiO₃/ CuO which was found to have much more dye adsorption capacity than the precursors (SiO, and CuO). Furthermore, SiO,/CuO had an exceptional fast rate of adsorption for the MB and CV where 77% and 66% of the initial amounts were removed within 1 min, respectively. On the other hand, the anionic dyes were found to be poorly adsorbed on SiO,/CuO. However, when ionic strength increased from 0.0 to 0.5 M NaCl, the adsorption of anionic dyes such as CR increased from 0.4% to 82.3%, while the adsorption of cationic dyes such as MB decreased from 91% to 28%. Thus, the selective removal of dyes can be achieved by controlling the ionic strength.

Keywords: Adsorption; Copper oxide; Silica; Cristobalite; Methylene blue; Crystal violet; Acid blue; Congo red

* Corresponding author.

1944-3994/1944-3986 ${\ensuremath{\mathbb C}}$ 2019 Desalination Publications. All rights reserved.