Prediction of pervaporation performance of aqueous ethanol solutions based on single gas permeation

Jinhui Wang, Tomohisa Yoshioka, Masakoto Kanezashi, Toshinori Tsuru*

Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University,
1-4-1 Kagayami-yama, Higashi-Hiroshima 739-8527, Japan
Tel. +81 (82) 424-7714; email: tsuru@hiroshima-u.ac.jp

Received 31 July 2009; Accepted 20 November 2009

ABSTRACT

In this study, pervaporation (PV) performance of porous silica membranes during dehydration of ethanol aqueous solutions was correlated with single gas permeation data in an attempt to predict PV performance. Porous silica membranes were prepared using a sol–gel technique with silica or cobalt-doped silica sols fired at different temperatures (from 350°C to 550°C) in air. Single gas permeation experiments were performed using pure gases (He, N₂, CO₂, and SF₆) at 200°C just after membrane preparation. PV experiments were carried out at 70°C at an ethanol feed concentration of 94 wt%. The time-course of PV performance and temperature-dependence for a single gas were investigated. The reproducibility of PV separation and gas permeation was investigated and confirmed. An attempt was made to find correlations between single gas permeation experimental data and PV separation performance. The permeance of He was reasonably well correlated with PV water flux. The permeance ratio of He/SF₆ was correlated with the PV separation factor.

Keywords: Pervaporation; Cobalt-doped silica membrane; Ethanol dehydration; Gas permeation

* Corresponding author.