Synthesis of Bi₂O₃/BiVO₄ heterojunction with enhanced photocatalytic activity via single-step hydrothermal method

Chung-Hsin Wu^{a,*}, Chao-Yin Kuo^b, Cheng-Di Dong^c, Chiu-Wen Chen^c, Yi-Li Lin^d, Wei-Ming Chen^a

^aDepartment of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, 415 Chien Kung Road, Kaohsiung, Taiwan, Tel. +886-7-3814526; Fax: +886-7-3830674; emails: wuch@nkust.edu.tw (C.-H. Wu), x19921011@gmail.com (W.-M. Chen) ^bDepartment of Safety, Health and Engineering, National Yunlin University of Science and Technology.

^bDepartment of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan, Tel. +886-5-5347311; email: kuocyr@ms35.hinet.net

^cDepartment of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, Tel. +886-7-3617141; emails: cddong@nkust.edu.tw (C.-D. Dong), cwchen@nkust.edu.tw (C.-W. Chen) ^dDepartment of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, Tel. 886-7-6011000; email: yililin@nkust.edu.tw

Received 8 April 2019; Accepted 29 June 2019

ABSTRACT

The single-step hydrothermal method was used to synthesize $Bi_2O_3/BiVO_4$ heterojunctions (BBVs) with various $Bi_2O_3/BiVO_4$ molar ratios. The surface characteristics of the prepared photocatalysts were analyzed by X-ray diffractometry (XRD), scanning electron microscopy, transmission electron microscopy, ultraviolet (UV)-visible-light (Vis.) spectrophotometry, surface area analysis, X-ray photoelectron spectroscopy and fluorescence spectrophotometry. C.I. Reactive Red 2 (RR2) was used as the parent compound to evaluate the photocatalytic activity of photocatalysts under UV and Vis. irradiation. The XRD peak intensity of $BiVO_4$ declined as the amount of Bi_2O_3 in the BBVs increased. The surface areas of all BBVs exceeded those of Bi_2O_3 and $BiVO_4$ and all of the samples exhibited strong absorption in the Vis. region. The optimal $Bi_2O_3/BiVO_4$ molar ratio was 0.25 and the corresponding photocatalyst was denoted as 0.25 BBV. The RR2 photodegradation rate constant of 0.25 BBV was 1.9 times that of $BiVO_4$ under UV irradiation, which was in turn 3.5 times that of $BiVO_4$ under Vis. irradiation of photo-generated carriers by the formed heterojunction. The results of a radical-trapping experiment revealed that the photo-generated holes and superoxide anion radicals were the primary reactive species in the BBV photocatalytic systems.

Keywords: BiVO₆; Bi₂O₃; Heterojunction; Hydrothermal; Photocatalytic

* Corresponding author.

1944-3994/1944-3986 © 2019 Desalination Publications. All rights reserved.