

Effect of the wall thickness of an overflow pipe on the short-circuit flow

Yung-Sheng Lai^a, Rome-Ming Wu^{a,b,*}

^aDepartment of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei County 25137, Taiwan, Tel. +886-2-2621-5656; Fax: +886-2-2620-9887; emails: jwu@mail.mcut.edu.tw (R.-M. Wu), yu999chia@mail.tku.edu.tw (Y.-S. Lai)

Received 5 January 2019; Accepted 25 December 2019

ABSTRACT

This study adopted FLUENT, a computational fluid dynamics software program, for the three-phase flow simulation of a hydrocyclone. The flow field and air-core of a hydrocyclone were simulated through the large eddy simulation methodology and volume of the fluid multiphase flow model. The Reynolds stress model was used as the coupled turbulent model. The particle flow was then simulated using a discrete phase model for examining the influence of the wall thickness of the hydrocyclone overflow pipe on the short-circuit flow and particle grade efficiency. The results revealed that an appropriate thickness of the overflow pipe wall should be selected to avoid short-circuit flow.

Keywords: Overflow; Thickness; Efficiency; Particle; CFD

^bDepartment of Safety, Health and Environmental Engineering, Ming Chi University of Technology, 84 Gong-Juan Rd., Taishan, New Taipei 243, Taiwan, ROC

^{*} Corresponding author.