Effect of some new diazole derivatives on the corrosion behaviour of steel in 1 M HCl

Y. Abbouda,b,*, B. Ihssanea, B. Hammoutic, A. Abourrichea,b, S. Maoufouda, T. Saffajd, M. Berradaa, M. Charroufa, A. Bennamaraa, H. Hannacheb

aLaboratoire de Biomolécules et Synthèse Organique, Faculté des Sciences Ben M’sik, Casablanca, Morocco
Tel. +212 22 70 46 71/72/73; Fax +212 22 70 46 75; email: youabboud@yahoo.fr
bCentre d’Analyse et de Recherche, Faculté des Sciences Ben M’sik, Casablanca, Morocco
cLaboratoire de Chimie Appliquée et Environnement, Faculté des Sciences, Oujda, Morocco
dCentre Universitaire Régional d’Interface, Université Sidi Mohamed Ben Abdallah Route d’Imouzzer, BP. 2626, Fès 30000, Morocco

Received 13 October 2009; Accepted in revised form 22 January 2010

\textbf{A B S T R A C T}

The inhibiting properties of four diazole derivatives namely 2,2’-ethylene-bis(benzimidazole) (EBBI), 2,2’-butylene-bis(benzimidazole) (BBBI), 2,2’-hexamethylene-bis(benzimidazole) (HBBI) and 2,2’-octamethylene-bis(benzimidazole) (OBBI), against the corrosion of mild steel in solutions of hydrochloric acid has been studied by various corrosion monitoring techniques and reported here for the first time. Preliminary screening of the inhibition efficiency was carried out using weight loss measurements. At the inhibitor concentration range of 10-5–5×10-4 M) in 1 M HCl, the inhibitor efficiency increases with concentration of the organic substrate. Potentiodynamic polarisation studies showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 M HCl by adsorption on the metal surface according to Langmuir adsorption isotherm. The values of free energies of adsorption (\(\Delta G_{\text{ads}}^{0}\)) suggest a mixed physisorption and chemisorption of diazole molecules on the steel surface. The inhibition efficiency of these inhibitors increases in the order OBBI > HBBI > BBI > EBBI.

\textit{Keywords}: Corrosion inhibition; Mild steel; Acidic media; Diazole derivative; Adsorption