

1944-3994 / 1944-3986 © 2010 Desalination Publications. All rights reserved. doi: 10.5004/dwt.2010.1268

Lower rate of H⁺(OH⁻) ions generation at an anion-exchange membrane in electrodialysis

N.D. Pismenskaya^a, E.I. Belova^a, V.V. Nikonenko^a, V.I. Zabolotsky^b, G.Yu. Lopatkova^c, Yu.N. Karzhavin^c, C. Larchet^{d*}

^aKuban State University, 149 Stavropolskaya str., 350040 Krasnodar, Russia ^b''Membrane Technology'' IE, 202 Stavropolskaya str., 350040 Krasnodar, Russia ^cJSC ''Regional Interbranch Center YugTechInform'', 71 Mira str., 350033 Krasnodar, Russia ^dUniversity Paris, Est Créteil, 94010 Créteil, France Tel. +33 1 45171486; email: larchet@univ-paris12. fr

Received 29 August 2008; Accepted 17 March 2010

ABSTRACT

A way of improvement of electromembrane technology for water production required in heatand-power engineering by applying modified anion exchange membranes is proposed. The novel membranes are produced by treatment of commercial Russian heterogeneous MA-40 membranes with a polyelectrolyte bearing quaternary ammonium groups. It is found that this modification results in lowering the rate of H⁺ and OH⁻ ions generation (water splitting) at overlimiting currents and in a considerable increase in current efficiency due to the decrease in the OH⁻ ions transfer across the anion-exchange membrane. Moreover, we observed an increment in the salt counterion transfer through the membrane. The decrease in water splitting rate at the interface 'anion-exchange membrane/depleted solution' leads to increasing pH in the desalting compartment and decreasing pH in the concentrating one. As a consequence, the risk of the salt precipitation on the membrane surface in the concentrating compartment is reduced, and the removal of weak acids from the desalting water is found enhanced.

Keywords: Ion exchange membrane; Modification; Water splitting; H⁺(OH⁻) ions generation; Electrodialysis; Hybrid baro-electromembane technologies

21 (2010) 109–114 September

* Corresponding author.