Desalination and Water Treatment www.deswater.com

1944-3994 / 1944-3986 © 2010 Desalination Publications. All rights reserved.
doi: 10.5004/dwt.2010.1620

A new microfiltration photocatalytic reactor for DDT removal

Weihai Pang, Naiyun Gao, Haifeng Wang, Shengji Xia*

State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China Tel. +86 21 33778616; Fax +86 21 65982691; email: xiashengji@hotmail.com

Received 4 November 2009; Accepted 8 March 2010

ABSTRACT

In this paper, a process combining stainless steel membrane and UV/TiO₂ is developed to degrade DDT in water. The photocatalyst TiO₂ was deposited on a kind of glass cenospheres whose diameters ranged from 20 to 200 mm, so they could be kept in the reactor by microfiltration membrane. The influence of different variables (TiO₂ concentration, radiation) on the reaction rate was tested. According to the experiment, the removal was mainly caused by adsorption during the early stages of the reaction and mainly by UV/TiO₂ degradation in the later stages. Three sample solutions with DDT concentrations: $C_0 = 30$, 40 and 50 mg/L, were treated in the reactor and the removal rate of DDT was found to be 98.3%, 97.8% and 97.6%, respectively. Adequate dosage of the catalyst increased the generation rate of electron/hole pairs which promoted the formation of OH radicals for enhancing photodegradation.

Keywords: Drinking water; Stainless steel membrane; Persistent organic pollutants

21 (2010) 303–307 September

* Corresponding author.