Construction of Bi₂WO₆ with oxygen vacancies and investigation on mechanisms of significantly enhanced photocatalytic activity

Wen An^a, Shaomang Wang^{a,*}, Yang Fu^a, Yuan Guan^b, Zhongyu Li^{b,*}, Tao Xu^a, Haoran Wang^a

^aSchool of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, China, Tel. +8651986330086, emails: gywsm@cczu.edu.cn (S.M. Wang), 2914433428@qq.com (W. An), 895710489@qq.com (Y. Fu), 1534078935@qq.com (T. Xu), 3193311802@qq.com (H.R. Wang) ^bJiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China,

Received 30 May 2020; Accepted 19 November 2020

ABSTRACT

 Bi_2WO_6 nanosheets with gradient oxygen vacancies were synthesized by acetic acid solvothermal and subsequent calcination. The photocatalytic activity of the calcined Bi_2WO_6 was significantly enhanced. The calcination regulated the oxygen vacancy in Bi_2WO_6 . Oxygen vacancy defects helped to adjust the band structure and change the surface chemical state. At the same time, the electrons were the main charge carriers of the *n*-type semiconductor Bi_2WO_6 . Part of the electrons was captured by the oxygen vacancies to promote the separation of the holes. Some of the electrons reacted with oxygen to generate O_2^- . The h^+ and O_2^- were the main active species that degraded rhodamine B. Among them, Bi_2WO_6 with 1 h of calcination at 315°C (Bi_2WO_6 -315°C 1 h) exhibited the optimal photocatalytic activity. The degradation velocity of rhodamine B over Bi_2WO_6 was 21.4 times that of Bi_3WO_6 under the same reaction condition.

Keywords: Photocatalysis; Bismuth tungstate; Defect; Oxygen vacancy; Radical reactions

* Corresponding authors.