In-situ N-doped TiO₂/mesoporous g-C₃N₄ nanosheets S-scheme heterojunction derived from supramolecular precursor with enhanced visible-light photocatalytic performance

Changsheng Ban^{a,b}, Jun Li^{a,b,*}, Yang Jin^{a,b}, Longtao Zuo^{a,b}, Wenqi Xu^{a,b}

^aSchool of Chemical Engineering, Sichuan University, Chengdu 610065, China, emails: lijunlab@163.com (J. Li), bcsno1@163.com (C. Ban), jinyangyoung@126.com (Y. Jin), zuolongtao@qq.com (L. Zuo), xuwenqi0401@163.com (W. Xu) ^bEngineering Research Center for Comprehensive Utilization and Cleaning Process of Phosphate Resource, Ministry of Education, Chengdu 610065, China

Received 28 January 2021; Accepted 15 May 2021

ABSTRACT

The N-doped TiO₂/g-C₃N₄ S-scheme heterojunction with holy nanosheet framework has been synthesized by a simple pyrolysis process of amorphous TiO₂ and melamine-cyanaurate complex. During the formation of heterojunction photocatalysts, the interaction of two precursors not only provided in-situ nitrogen doping in TiO₂, but also construct S-scheme charge transfer channel. Also, N-TiO₂/g-C₃N₄ exhibited a porous nanosheet structure due to the co-crystallization of TiO₂ and g-C₃N₄ at 450°C. The enhancement in narrower bandgap and photogenerated charge carrier separation resulted in superior photocatalytic activities with the highest degradation rate of Methylene blue was recorded by MCN/T-50, which was 2.3 and 3.7 times that of bulk g-C₃N₄ and pristine TiO₂. The possible mechanism for the enhanced photocatalytic performance is proposed in this study. The doped S-scheme heterojunction materials prepared from the co-crystallization of precursors in calcination give a broad prospect for the future design of a highly efficient visible-light-driven photocatalyst.

Keywords: N-doped TiO₂; Mesoporous $g-C_3N_4$; Melamine-cyanaurate complex; S-scheme heterojunction; Degradation

* Corresponding author.

1944-3994/1944-3986 ${\ensuremath{\mathbb C}}$ 2021 Desalination Publications. All rights reserved.