•

Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2010 Desalination Publications. All rights reserved doi: 10.5004/dwt.2010.1567

Coagulation and advanced oxidation processes in the treatment of olive mill wastewater (OMW)

Walid K. Lafi^a, Mohammad Al-Anber^b, Zaid A. Al-Anber^a*, Mohammad Al-shannag^a, Adnan Khalil^a

^aDepartment of Chemical Engineering, Al-Balaqa Applied University, PO Box 15008, Marka, Amman, Jordan Tel. +9620777514053; Fax +96264894292; email address: z_alanber@yahoo.com ^bIndustrial Inorganic Chemistry, Department of Chemical Science, Faculty of Science Mútah University P.O. Box 7, 61710 Al-Karak, Jordan

Received 8 October 2009; accepted 8 June 2010

ABSTRACT

This paper proposes the use of a combination of two treatment processes for the removal of organic pollutants from the olive oil mill wastewater (OMW). The two treatment processes are, a single coagulation stage followed by a single advanced oxidation, AOP, stage. For the AOP_s, the following processes were used; UV, O_3 , O_3/UV and H_2O_2/UV depending on the operating time .Two coagulant Al^{3+} and Fe^{3+} ions were used in the experimental program conducted in this study. The concentration of the chemical oxygen demand (COD) was measured in the effluent of the treated wastewater for each experiment. The percent removal of the COD concentration achieved using the two coagulant Al^{3+} and Fe^{3+} ions at pH = 9, was 54% and 58%, respectively. In a comparison, the percent removal of the COD is found in the range of 10–39% using an advanced oxidation process alone. The percent removal of the COD concentration achieved using the combined processes, coagulation and AOP_s (O_3 , O_3/UV and H_2O_2/UV), are 90%, 95% and 94%, respectively. In all experiments conducted, the percent removal of organic contaminants load was directly related to the concentration of organic compounds in the influent of the wastewater.

Keywords: Olive mill; Advanced oxidation; Coagulation; COD; Wastewater treatment

24 (2010) 251–256 December

^{*}Corresponding author