Decoloration of Methyl Red by gliding arc discharge

Beyram Trifi*, Simeon Cavadiasb, Nizar Bellakhalc

*Laboratoire de Chimie Analytique et Electrochimie, Département de Chimie, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
Tel. +216 (97) 34 57 96; Fax +216 (71) 88 50 08; email: beyramtrifi@yahoo.fr
bLaboratoire de Génie des Procédés Plasma et Traitement de Surface, Ecole Nationale Supérieure de Chimie de Paris, 75005 Paris, France
cDépartement de Chimie et de Biologie Appliquées, Institut National des Sciences Appliquées et de Technologie, B.P. 676, 1080 Tunis Cedex, Tunisia

Received 20 December 2010; Accepted in revised form 11 July 2010

**ABSTRACT**

The degradation of an azo dye, the Methyl Red, has been studied by gliding arc discharge. The main advantage of this process is due to the large production of reactive species, specially the hydroxyl radicals (OH·). These radicals are able to oxidize organic pollutants and treat dye wastewater. The coupling of this process with Fenton reagent (Fe2⁺), with Titanium oxide (TiO₂) and with TiO₂ and Fe²⁺ simultaneously was investigated in order to enhance the decoloration rate. The results show that the decoloration of Methyl Red was more efficient in the presence of Titanium oxide than Fe²⁺. Moreover, the presence of TiO₂ has the same effect as Fe²⁺ and TiO₂ simultaneously. Under optimal condition, the degradation of Methyl Red was around 97.8%. This implies that the majority molecules of Methyl Red are destroyed. In other hand, the hydroxylation reaction of Methyl Red can be treated as a kinetic pseudo-first order.

**Keywords**: Humid air plasma; Gliding arc; Methyl Red; Decoloration