Desalination and Water Treatment www.deswater.com doi: 10.5004/dwt.2022.28960

Productivity modelling of an inclined stepped solar still for seawater desalination using boosting algorithms based on experimental data

Raniyah Wazirali^a, Mohammed Shadi S. Abujazar^{b,c,*}, Sohaib K.M. Abujayyab^d, Rami Ahmad^e, Suja Fatihah^f, A.E. Kabeel^g, Sakine Ugurlu Karaağaç^c, Salem S. Abu Amr^h, Motasem Y.D. Alazaizaⁱ, Mohammed J.K. Bashir^j, Ibrahim Y Sokar^k

^aCollege of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia, email: r.wazirali@seu.edu.sa (R. Wazirali)

^bAl-Aqsa Community Intermediate College, Al-Aqsa University, Gaza, Palestine, P.B.4051, email: shadiabujazar@gmail.com/ms.abujazar@alaqsa.edu.ps (M.S.S. Abujazar)

^cDepartment of Environmental Engineering, Faculty of Engineering, Karabük University, Karabük 78050, Turkey, email: sakineugurlu@karabuk.edu.tr (S.U. Karaağaç)

^dFire safety engineering, International College for Engineering and Management, Muscat 112, Oman, email: sohaib@icem.edu.om (S.K.M. Abujayyab)

^eCollege of Computer Information Technology, American University in the Emirates, 503000, United Arab Emirates, email: rami.alshwaiyat@aue.ae (R. Ahmad)

Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia, email: fati@ukm.edu.my (S. Fatihah)

§Mechanical Power Engineering Department, Faculty of Engineering, Tanta University, Tanta, Egypt, email: kabeel6@hotmail.com (A.E. Kabeel)

^hInternational College for Engineering and Management, 111 St, Seeb, Muscat, Oman, email: salemabuamro@karabuk.edu.tr (S.S. Abu Amr)

ⁱDepartment of Civil and Environmental Engineering, College of Engineering, A'Sharqiyah University, 400 Ibra, Oman, email: my.azaiza@gmail.com (M.Y.D. Alazaiza)

Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia, email: jkbashir@utar.edu.my (M.J.K. Bashir)

^kFaculty of Computer Science and Information Technology, Gaza University, Gaza, Palestine, email: i.sokar@gu.edu.ps (I.Y. Sokar)

Received 16 May 2022; Accepted 25 September 2022

ABSTRACT

Solar energy has recently become a viable option for desalinating seawater, primarily in arid regions. However, increasing the productivity of solar still by integrating experimental base and modelling methods is still subject to prediction errors; therefore, the main objective of this research is to postulate and test boosting algorithms for predicting the efficiency and productivity of the system. Five boosting regressors were deployed and evaluated: categorical boosting, adaptive boosting, extreme gradient boosting, gradient boosting machine, and gradient boosting machine (LightGBM). The proposed regressors are implemented based on the system's actual recorded dataset (consisting of 720 observations). The dataset consists of input variables, which are the wind speed (V), cloud cover, humidity, ambient temperature (T), solar radiation (SR), (T_{vo}), (T_{vo}), and (T_{vo}). Also, the output variable is represented by the productivity of the system. The dataset was separated into training (70%) and testing (30%) sets. In order to decrease regressors

^{*} Corresponding author.

errors, hyperparameter optimization was employed. GradientBoosting approach provided the best prediction, with 95% R^2 accuracy and 39.57 root mean square error (RMSE) error. The LightGBM technique achieved 94% R^2 accuracy and 40.07 RMSE error in the testing dataset. The results reveal that GradientBoosting outperforms the cascaded forward neural network in predicting system productivity (CFNN).

Keywords: Solar desalination; Meteorological data; Boosting algorithms; Modelling; Productivity evaluation