Characteristics of \(\text{N}_2\text{O} \) release from fluidized media type BNR processes and identification of \(\text{N}_2\text{O} \) sources

Tae-Hyeong Kim, Myoung-Joo Lee, Hyun-Sup Jang, Boo-Ki Min, Ga-Young Yoo, Sun-Jin Hwang*

Center for Environmental Studies, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Yongin 449-701, Republic of Korea
Tel. +82-31-201-2497; Fax: +82-31-203-4589; email: sjhwang@khu.ac.kr

Received 25 September 2010; Accepted in revised form 28 October 2010

ABSTRACT

The effects of C/N ratios and fluidized media on \(\text{N}_2\text{O} \) emissions were investigated during the conventional biological nitrogen removal (BNR) process for wastewater treatment containing high levels of nitrogen. Low concentration of \(\text{N}_2\text{O} \) emissions was maintained at around 50–100 ppm when the C/N ratio was 3. However higher amounts of \(\text{N}_2\text{O} \) (maximum rate 800 ppm) were released from denitrification, when the C/N ratio was 1.5 and 1, compared to when the ratio was 3. The influence of oxygen concentration on \(\text{N}_2\text{O} \) release as well as its sources was investigated using a nitrogen isotope (\(^{15}\text{N}\)) tracer method. Our results indicated that around 50% of the released \(\text{N}_2\text{O} \) was originated from denitrification under aerobic conditions. Under aerobic conditions, the proportion and amount of \(\text{N}_2\text{O} \) emissions from denitrification increased with a decrease in dissolved oxygen (DO). In micro-aerobic conditions, 98.6% of \(\text{N}_2\text{O} \) emission was originated from denitrification. This result implies that an anoxic zone was present even in aerobic reactors and that reactors with low DO tended to have larger anaerobic zones.

Keywords: Nitrous oxide (\(\text{N}_2\text{O} \)); Nitrification; Denitrification; \(^{15}\text{N}\)-Isotope; C/N ratio

*Corresponding author.