On the concept of a supervisory, fuzzy set logic based, advanced filtration control in membrane bioreactors

E. Brauns*, E. Van Hoofa, C. Huyskensa, H. De Wevera

aVITO (Flemish Institute for Technological Research), Unit SCT (Separation and Conversion Technology), Boeretang 200, B-2400, Mol, Belgium
Tel. +32 (14) 336913; Fax +32 14 326586; email: etienne.brauns@telenet.be
bUniversity of Antwerp, Department of Applied Biological Sciences, Groenenborgerlaan 171, 2020 Antwerp, Belgium

Received 21 September 2010; Accepted in revised form 18 November 2010

ABSTRACT

The filtration process within a membrane bioreactor (MBR) is mostly controlled in a classic way through typical set-points such as aeration flow rate, filtration duration, backwash frequency or relaxation duration. The values of these filtration set-points result from “experience” and remain often unchanged during the installation’s operational lifetime. Filtration is dictated considerably by membrane fouling phenomena. The fouling potential of the mixed liquor however can significantly fluctuate, even daily, from changing influent characteristics. Fixed set-point values thus may represent sub-optimal filtration conditions. Consequently, a supervising advanced control system, being able to continuously adapt the set-point's values would be beneficial regarding the MBR filtration process optimization. Such optimization could reduce the corresponding MBR energy consumption, e.g. linked to the filtration related membrane aeration. An Advanced Control System (ACS) based on Fuzzy Set Logic (FSL) is introduced here, enabling to supervise an existing classic membrane filtration control system. Such ACS is able to daily (or even more frequent) optimize the set-points of the underlying classic control system, from the input of various sensor and process parameter values. The theoretical background and practical implementation of the FSL based ACS concept is explained.

Keywords: Bioreactor, Membrane, Fouling, Fuzzy, Advanced, Control, Optimization

* Corresponding author.