Direct impact and delayed post-discharge chemical reactions of FeII complexes induced by non-thermal plasma

Samuel Laminskia, Elie Acayankaa, Serge Nzalia, Peter Teke Ndifona, Jean-Louis Brissetb*$

aInorganic Chemistry Department, University of Yaounde-I, P.O. Box 812, Yaounde, Cameroon
bLaboratoire d’Electrochimie (L.E.I.C.A.), UFR des Sciences de l’Université de Rouen, 76821 Mont-St. Aignan, France

Email: brissjl@club-internet.fr

Received 12 March 2010; Accepted 30 June 2011

ABSTRACT

Dilute solutions of organometallic complexes, i.e., Ferrocene and tris(1,10-phenanthroline)FeII or ferroïn, readily oxidize when exposed to the gaseous species generated in a gliding electric discharge in humid air. Ferrocene (or bis-cyclopentadienyl FeII) turns to blue ferricinium ion while ferroïn solutions fade. Ferroïn is gradually oxidized to ferriïn which agrees with the higher sensitivity of the central metal to the action of plasma than the organic ligand engaged in the complex. The oxidation hardly obeys a pseudo 1st order kinetics law ($k_1^*=4\times10^{-2}$ min$^{-1}$). Additionally the oxidation reaction keeps on developing in post-discharge conditions according to a pseudo 1st order reaction ($k_1=5\times10^{-3}$ min$^{-1}$). This feature tends to generalize the occurrence of temporal post-discharge reactions which are of major interest for industrial applications.

Keywords: Gliding discharge; Non-thermal plasma; tris(1,10-phenanthroline),FeII; Ferrocene; Post-discharge; Humid air; Oxidation

*Corresponding author.