Beaded ZnTiO$_3$ fibers prepared by electrospinning and their photocatalytic properties

Chengcheng Zhanga, Xiang Lia, Tian Zhenga, Yang Yanga, Yongxin Lia, Ye Lia, Ce Wanga,*, Lijuan Lib

aJilin University Alan G MacDiarmid Institute, Changchun 130012, PR China
Tel./Fax: +86 431 85168292; email: cwoang@jlu.edu.cn
bDepartment of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA

Received 10 May 2011; Accepted 17 January 2012

ABSTRACT

Beaded ZnTiO$_3$ fibers have been fabricated by a combination of sol-gel, electrospinning and calcination techniques. The ZnTiO$_3$ can be obtained by calcining at 700°C for 3.5 h. The morphology and structure of the obtained photocatalytic material were characterized by various analytical techniques such as scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). Their photocatalytic activity was evaluated by the decomposition of methyl violet dye solution under simulated solar light irradiation. The fibers exhibited a beaded-like morphology as shown in the TEM image. The effect of different morphology including fibers and short fibers on the photocatalytic performance was also investigated. For the ZnTiO$_3$ fibers and short fibers, almost all the dyes were degraded after 4 h and 3 h, respectively.

Keywords: Sol-gel; Electrospinning; Calcination; Methyl violet; Photocatalytic degradation; ZnTiO$_3$