Performance investigation of advanced adsorption desalination cycle with condenser–evaporator heat recovery scheme

Kyaw Thua, Young-Deuk Kima, Aung Myatb, Anutosh Chakrabortyc, Kim Choon Ngb,\ast

aWater Desalination and Reuse Center, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
bDepartment of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 117576, Singapore
cSchool of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Received 2 March 2012; Accepted 10 May 2012

\textbf{ABSTRACT}

Energy or heat recovery schemes are keys for the performance improvement of any heat-activated cycles such as the absorption and adsorption cycles. We present two innovative heat recovery schemes between the condensing and evaporating units of an adsorption desalination (AD) cycle. By recovering the latent heat of condenser and dumping it into the evaporative process of the evaporator, it elevates the evaporating temperature and hence the adsorption pressure seen by the adsorbent. From isotherms, this has an effect of increasing the vapour uptake. In the proposed configurations, one approach is simply to have a run-about water circuit between the condenser and the evaporator and a pump is used to achieve the water circulation. This run-around circuit is a practical method for retrofitting purposes. The second method is targeted towards a new AD cycle where an encapsulated condenser–evaporator unit is employed. The heat transfer between the condensing and evaporative vapour is almost immediate and the processes occur in a fully integrated vessel, thereby minimizing the heat transfer resistances of heat exchangers.

\textit{Keywords:} Desalination; Adsorption; Heat recovery; Solar energy

\astCorresponding author.

*Presented at the International Conference on Desalination for the Environment, Clean Water and Energy, European Desalination Society, 23–26 April 2012, Barcelona, Spain