Simple process for hardening desalinated water with Mg2+ ions

David Hassona, *, Raphael Semiata, Hilla Shemera, Menachem Prielb, Nissim Nadavb

aRabin Desalination Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
Tel. +972 4 8292936; Fax: +972 4 8292850; email: hasson@tx.technion.ac.il
bMekorot Water Co, Israel

Received 4 March 2012; Accepted 25 June 2012

ABSTRACT

A simple easily controlled technique for adding Mg2+ ions to desalinated water is described. The Israeli Health Authority recommendation of adding of 20–30 mg/L of Mg2+ can be readily met by dissolution of magnesia pellets in a packed bed column. Experimental data are presented showing the effects of the specific flow velocity and CO\textsubscript{2} acidification of the inlet desalinated water on the Mg2+ concentration in the product stream leaving the column. Acidification of the inlet feed water is shown to enhance considerably the dissolution process. A kinetic expression is presented enabling full design of a dissolution packed column with nonacidified water.

Keywords: Desalinated water; Hardening; Magnesium; Magnesia dissolution; Kinetic model

*Corresponding author.

Presented at the International Conference on Desalination for the Environment, Clean Water and Energy, European Desalination Society, 23–26 April 2012, Barcelona, Spain