Optimization of conditions in ultrafiltration treatment of produced water by polymeric membrane using Taguchi approach

Amin Reyhania, Fatemeh Rekabdarb,*, Mahmoud Hemmatc, Ali Akbar SafeKordia, Mahdi Ahmadid

aDepartment of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
bDepartment of Polymer synthesis and member of scientific board, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, Tehran, Iran
cPolymer Science and Technology Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
dDepartment of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

Received 28 December 2012; Accepted 11 February 2013

ABSTRACT

In this study, the ultrafiltration of produced water was studied using a two-stage ultrafiltration process. In the first stage, the influences of operating parameters, including transmembrane pressure, temperature, and cross-flow velocity on the amount of flux decline caused by membrane fouling, were investigated using a polymeric membrane. In order to design the experiments and optimize the experimental results, the Taguchi method was applied. \(L_9\) \((3^3)\) orthogonal array for experimental planning and the smaller-the-better response category was selected to obtain optimum conditions because the lowest flux decline was our aim. Analysis of variance was used to determine the most important parameters affecting the flux decline caused by membrane fouling. The optimum conditions were found at the first level of transmembrane pressure (1.5 bar), second level of temperature (40°C), and third level of cross-flow velocity (1 m/s). In the second stage, performance of ultrafiltration system by the polymeric membrane was investigated under the optimum conditions and 99% oil and grease, 100% TSS, 99% Turbidity, and 68% TOC removal was obtained. Also, the size of particles in feed decreased from the range of 200–800 nm to 1.5–3 nm.

Keywords: Polymeric membrane; Produced water; Taguchi; Ultrafiltration

*Corresponding author.

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.