Use of converter furnace steel slag for bacteria removal in flow-through columns

Jin-Kyu Kanga, Chang-Gu Leea, Jeong-Ann Parka, Song-Bae Kim\textsuperscript{b,*}, Seungho Yuc, Tae-Hun Kimc

aEnvironmental Functional Materials & Biocolloids Laboratory, Seoul National University, Seoul 151-921, Republic of Korea
bDepartment of Rural Systems Engineering and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
Tel. +82 2 880 4587; Fax: +82 2 873 2087; email: songbkim@snu.ac.kr
cResearch Division for Industry and Environment, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 580-185, Republic of Korea

Received 19 November 2012; Accepted 14 February 2013

ABSTRACT

The aim of this study was to investigate the removal of bacteria (\textit{Escherichia coli}) in flow-through columns (length = 10 cm; inner diameter = 2.5 cm) containing converter furnace steel slag and quartz sand. The X-ray fluorescence (XRF) analysis shows that calcium (Ca) and iron (Fe) were the major elements of the steel slag. The X-ray diffractometry (XRD) pattern indicates that hematite (Fe$_2$O$_3$), magnetite (Fe$_3$O$_4$), and dicalcium ferrite (Ca$_2$Fe$_2$O$_5$) were the major constituents of the steel slag. Results show that the percent removals of bacteria in the steel slag were 2.4–3.2 times greater than those of the sand. As the steel slag content increased from 0 to 100% in the mixture of steel slag and sand, the percent removal increased from 39.9 ± 2.7 to 97.3 ± 0.1%. Results indicate that the steel slag was effective in the removal of bacteria. This could be attributed to iron oxides present in the steel slag, which play an important role of bacterial adhesion. Also, calcium oxide, which was released from the steel slag, could contribute to the removal of bacteria as bactericide. This study demonstrates that the steel slag has potential as a reactive media to remove bacteria from aqueous solution.

\textit{Keywords:} Bacteria removal; Calcium oxide; Column experiment; Converter furnace steel slag; Iron oxide

*Corresponding author.

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.