Removal of nitrogen and phosphorus from municipal wastewater effluent using *Chlorella vulgaris* and its growth kinetics

Jinsoo Kim\(^a\), Zhuyang Liu\(^a\), Joo-Youp Lee\(^a,\!*\), Ting Lu\(^b\)

\(^{a}\)Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012, USA
Tel. +1 513 566 0018; Fax: +1 513 566 0018; email: joo.lee@uc.edu
\(^{b}\)Wastewater Treatment Division, The Metropolitan Sewer District of Greater Cincinnati, Cincinnati, Ohio 45204-2022, USA

Received 16 November 2012; Accepted 20 February 2013

ABSTRACT

Chlorella vulgaris was used for the removal of residual ammonia/ammonium ion (NH\(_3\)/NH\(_4^+\)) and orthophosphate ion (PO\(_4^{3-}\)) from secondary wastewater effluent collected from a municipal wastewater treatment plant. The uptake rates for nitrogen and phosphorus were studied with different initial algal cell densities and the addition of CO\(_2\) gas for pH control and supply of inorganic carbon. Our result showed that typical NH\(_3\)/NH\(_4^+\) and PO\(_4^{3-}\) concentrations could be readily removed within 48 h. It was found that the culture with an initial algal cell density of \(~350\) mg/L and CO\(_2\) gas supply could significantly enhance both the rates of cell growth and nutrient uptake. The Monod equation well described the algal cell growth under substrate-limiting conditions, and could be used for the design and operation of photobioreactors for potential tertiary wastewater treatment.

Keywords: *Chlorella vulgaris*; Wastewater effluent; Nitrogen and phosphorus removal; Growth kinetics