

Desalination and Water Treatment

www.deswater.com

1944-3994/1944-3986 © 2013 Desalination Publications. All rights reserved doi: 10.1080/19443994.2012.705094

51 (2013) 1609–1614 February

Modeling of cavitation as an advanced wastewater treatment

Mauro Capocelli^a, Marina Prisciandaro^{a,*}, Amedeo Lancia^b, Dino Musmarra^c

^aDepartment of Chemistry, Chemical Engineering and Materials, University of L'Aquila, Zona Industriale di Pile, 67100 L'Aquila, Italy

Tel. +39 0862434241; email: marina.prisciandaro@univaq.it

^bDepartment of Chemical Engineering, University "Federico II" of Napoli, Piazzale V. Tecchio, 80, 80125 Napoli, Italy

^cDepartment of Civil Engineering, Seconda Università di Napoli, Real Casa dell'Annunziata, Via Roma 29, 81031 Aversa (CE), Italy

Received 8 March 2012; Accepted 15 June 2012

ABSTRACT

This paper presents a theoretical study of cavitation as an advanced oxidation process. A mathematical algorithm, which couples single bubble dynamics and chemical reactions for a cavitating bubble, is proposed and compared with experimental and theoretical works reported in the literature. The main output variable, used for comparison, is the hydroxyl radical production. A wide range of parameter values is evaluated for the analysis of hydro-dynamic cavitation in an orifice. Thanks to the large number of simulation, it was possible to find a very good agreement with a design correlation proposed in the literature. Additionally, a novel approach has been proposed, which consists of integrating the estimated radical production over a typical bubble size distribution in order to predict a global oxidant production. Moreover, by fixing the values of flowrate, pressure, and geometric parameters, a real experimental condition of hydrodynamic cavitation in a Venturi device has been simulated. This allowed the comparison of simulation results with the experimental ones reported in the literature. A good agreement has been found in terms of cavitational yield, an estimation of the process efficiency from an energetic perspective.

Keywords: Advanced oxidation processes; Hydrodynamic cavitation; Theoretical modeling; Hydroxyl radicals

^{*}Corresponding author.

Presented at the International Conference on Desalination for the Environment, Clean Water and Energy, European Desalination Society, 23–26 April 2012, Barcelona, Spain