Fluoride removal from aqueous solution by functionalized-polyacrylonitrile coated with iron oxide nano particles: characterization and sorption studies

Jafar Nouria, Ramin Nabizadehb, Mahsa Jahangiri-rada,*, Masoud Yunesianb Faramarz Moattara

aDepartment of Environmental Science, Graduate School of the Environment and Energy, Science and Research Branch, Islamic Azad University, Tehran, Iran
Tel. +98 21 4486 9443; email: mahsajahangiri_64@yahoo.com
bCenter for Air Pollution Research, Institute of Environmental Research, Tehran University of Medical Sciences, Tehran, Iran

Received 21 January 2013; Accepted 27 April 2013

\begin{abstract}
Polyacrylonitrile (PAN)-oxime-nano Fe\textsubscript{2}O\textsubscript{3} was used as an adsorbent for the removal of fluoride from water. The influences of contact time, initial fluoride concentration, and adsorbent dosage were investigated by batch equilibrium studies. The rate of adsorption was rapid with equilibrium being attained after 100 min. The Langmuir isotherm model was found to represent the measured adsorption data well. The adsorption process followed the pseudo-first-order kinetic model. It was found that the adsorbed fluoride could be easily desorbed by replacing the adsorbent in deionized water. This indicates that the material could be easily recycled. The results from the present study show the potential of PAN-oxime-nano Fe\textsubscript{2}O\textsubscript{3} for fluoride removal. Furthermore, the adsorption isotherms of Fluoride removal were examined and the possible desorption process was discussed.

\textit{Keywords:} Polyacrylonitrile; Fe\textsubscript{2}O\textsubscript{3} nanoparticles; Adsorption isotherms; Desorption
\end{abstract}