

On precipitated calcium and magnesium phosphates during synthetic hard waters softening by monosodium phosphate

A.S. Manzola^{a,*}, A. Mgaidi^b, M.S. Laouali^a, M. El Maaoui^b

^aLaboratoire de Chimie Analytique et Minérale, Faculté des sciences, Université Abdou Moumouni, BP 10662 Niamey, Niger

Tel. +227 20315072; Fax: +22720315862; email: abdoussalam_manzola@yahoo.com ^bLaboratoire de Chimie Minérale Industrielle, Faculté des sciences, Université de Tunis, El Manar, BP 37, El Belvédère 1002, Tunis, Tunisia

Received 12 July 2012; Accepted 5 May 2013

ABSTRACT

Phosphates were largely used to soften process or drinking waters. We have investigated the precipitation of Ca²⁺ and Mg²⁺ ions by monosodium phosphate dehydrate. Magnesium phosphate starts precipitating at pH₀=8.6. The obtained solids have been identified by chemistry analyses, FTIR spectroscopy, X-ray diffraction, thermo gravimetric analysis and differential thermal analysis. The solid phases obtained vary with pH₀. It shows that DCPD (dicalcium phosphate dehydrate, CaHPO₄·2H₂O) precipitated within pH₀ 5 to 6.6, the TCP (tricalcic phosphate) and other apatite appear below pH₀=7. The DCPD (dicalcium phosphate dihydrate, CaHPO₄·2H₂O,) precipitated was a pure product that can be used in nanotechnology and biomedical technology. We are presently testing these solids for natural waters defluoridation.

Keywords: Softening; Synthetic hard waters; Settling time; Calcium; Magnesium; Phosphates; Solid phases

*Corresponding author.

1944-3994/1944-3986 © 2013 Balaban Desalination Publications. All rights reserved.