Adsorption of toluene, ethylbenzene and xylenes by activated carbon-impact of molecular oxygen

S.M. Yakouta,*, A.A.M. Daifullahb

aBiochemistry Department, College of Science, King Saud University, PO Box. 2455, Riyadh 11451, Kingdom of Saudi Arabia
Tel. + 966558448693; Fax: + 96614675931; email: sobhy.yakout@gmail.com
bAtomic Energy Authority, Hot Laboratories Centre, Cairo 13759, Egypt

Received 31 December 2012; Accepted 7 May 2013

\ABSTRACT

The effect of the presence of molecular oxygen on the adsorption of toluene, ethylbenzene and xylenes in distilled Milli-Q water and in surface water supplemented with background organic matter is evaluated using activated carbon from rice husk. Experiments are conducted under conditions where molecular oxygen is present (oxic adsorption), and where oxygen is absent (anoxic adsorption) from the test environment. Significant increase in the adsorptive capacity had been observed under oxic condition compared to anoxic condition. Molecular oxygen induces polymerization of these compounds on the carbon surface, which resulted in a significant increase in the adsorptive capacity of activated carbon.

\Keywords: Oxic and anoxic adsorption; Toluene; Ethylbenzene; Xylenes; Background organic matter