Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (Tomato) leaf powder as a low-cost biosorbent

Yuvaraja Guthaa, Venkata Subbaiah Munagapatib, Mu. Naushadc Krishnaiah Abburia,*

aDepartment of Chemistry, Sri Venkateswara University, Biopolymers and Thermophysical Laboratories, Tirupati 517 502, Andhra Pradesh, India
Tel. +91 9393621986; email: abburikrishnaiah@gmail.com

bDepartment of Chemical Engineering, Keimyung University, 2800 Dalgubeoldaero, Dalseo-Gu, Daegu 704-701, Republic of Korea

cDepartment of Chemistry, Advanced Materials Research Chair, College of Science, King Saud University, Building #5, Riyadh, Saudi Arabia

Received 13 October 2013; Accepted 18 December 2013

\textbf{ABSTRACT}

The present study investigates the biosorption potentiality of Lycopersicum esculentum leaves powder as a low-cost agricultural waste biomass for the removal of Ni(II) ion from aqueous solution in batch method. The experimental kinetic data were modeled using pseudo-first-order, pseudo-second-order, and intraparticle diffusion model. It was found that the biosorption was better described by pseudo-second-order kinetic model. Langmuir and Freundlich isotherm models were applied to analyze the experimental data and to predict the relevant isotherm parameters. The best interpretation for the experimental data was given by the Langmuir isotherm, and the maximum biosorption capacity for Ni(II) is 58.82 mg/g at 323 K. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated, and it was observed that the adsorption process was feasible, spontaneous, and endothermic.

\textit{Keywords:} Lycopersicum esculentum leaves powder; Biosorption; Nickel; Isotherms; Kinetics

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.