Degradation of bisphenol A by UV/H$_2$O$_2$ oxidation in aqueous solution containing nitrate and alkalinity

Chan G. Parka, Eun Y. Joa, Seung M. Parka, Hye W. Jeona,b, Kwang B. Kob,*

aEnvironment Division, Korea Testing Laboratory, Sangnok-gu, Ansan-si, Gyeonggi-do 426-910, Republic of Korea, Tel. +82 31 500 0386; Fax: +82 31 500 0388; email: pcg6189@hotmail.com (C.G. Park)

bSchool of Civil & Environmental Engineering, Yonsei University, 134 Shinchondong, Seoul 120-749, Republic of Korea, email: kbko@yonse.ac.kr (K.B. Ko)

Received 15 January 2014; Accepted 4 August 2014

ABSTRACT

The goal of the present study was to investigate the effect of nitrate and bicarbonate on the removal of bisphenol A (BPA) by conducting bench-scale UV/H$_2$O$_2$ operations under a variety of reaction time and initial concentrations of H$_2$O$_2$, NO$_3$-N and HCO$_3$$. Although 100% removal efficiency of BPA was observed in 2 min in the absence of HCO$_3$$, only 76.4 and 67.0% removal was achieved in the presence of 65 and 159 mg L$^{-1}$ HCO$_3$$, respectively. In the presence of 5 mg L$^{-1}$ of NO$_3$-N and 65 mg L$^{-1}$ of HCO$_3$$, the BPA removal efficiency was 87 and 76.5%, respectively. In the presence of both NO$_3$ and HCO$_3$, 51.2% of BPA was removed. It was reduced to approximately 50% less than both are absent. The efficiency of BPA removal depends not only on nitrate but also on bicarbonate in aqueous solution. The scavenging effect of bicarbonate was more noticeable than nitrate. The effect was about 33% under same conducted test conditions. The scavenging effect on BPA removal was largest when there were both nitrate and bicarbonate in aqueous solution. The efficiency of BPA was almost halved by them.

*Corresponding author.

Presented at the 6th International Conference on the “Challenges in Environmental Science and Engineering” (CESE-2013), 29 October–2 November 2013, Daegu, Korea

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.