Treatment and reuse of electronic wastewater using activated carbon based solid-phase advanced oxidation process

Jinwook Chunga, Minseok Kimb, So-Ryong Chaec, Jong-Oh Kim\textsuperscript{d,*}

aSamsung Engineering Co. Ltd, R&D Center 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do, Republic of Korea
bKorean Minjok Leadership Academy, Bongwha-ro 800, Anheung-myeon, Hoengseong-gun, Gangwon-do 225-823, Republic of Korea
cSchool of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
dDepartment of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea, email: jokim@gwnu.ac.kr

Received 27 November 2013; Accepted 13 February 2014

Abstract

Herein, the efficacy of catalysts for solid-phase advanced oxidation processes is evaluated in the removal of low-molecular-weight organics from semiconductor wastewater. To investigate and compare the removal efficiency, experiments were conducted by changing the mixing ratio of a catalyst with activated carbon. As a result, the optimal (Cu + Fe) and (Fe + Al) ratios for the removal of acetone and isopropyl alcohol (IPA) were 8:2 and 9:1, respectively, with activated carbon at pH 3. Over 70\% acetone removal and almost 100\% IPA removal were achieved under acidic conditions. The removal efficiency of both compounds could be maximized using a H\textsubscript{2}O\textsubscript{2} concentration of 4.5 mg/L. Solid-phase advanced oxidation processes were believed to be effective methods to overcome the low adsorbability of organics present in electronic wastewater on activated carbon.

Keywords: Acetone; Electronics wastewater; Isopropyl alcohol; Solid-phase advanced oxidation process

*Corresponding author.

Presented at the 6th International Conference on the “Challenges in Environmental Science and Engineering” (CESE-2013), 29 October–November 2013, Daegu, Korea

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.