Reduction of phosphorous at WWTP combined with DAF and A2/O

S.B. Kwona, D.I. Kimb, Y.T. Guanc, S. Dockkod,*

aWater Management & Research Center, Korea Water Resources Corporation (K-water), 462-1, Jeonmin-Dong, Yusung-Gu, Daejeon 305-730, Korea, Tel. +82 42 870 7522; email: chester@kwater.or.kr

bDepartment of Civil and Environmental Engineering, Dankook University, Yongin-si, Gyeonggi-do, 448-701 Korea, Tel. +82 31 8005 3610; email: dikim21@dankook.ac.kr

cGraduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, Tel. +86 755 26036036702; Fax: +86 755 26036702; email: guanyt@sz.tsinghua.edu.cn

dDepartment of Civil and Environmental Engineering, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Choongnam 330-714, Korea, Tel. +82 41 550 3516; Fax: +82 41 550-3520; email: dockko@dankook.ac.kr

Received 15 January 2014; Accepted 28 April 2014

\textbf{ABSTRACT}

Regulation of the phosphorous (P) concentration in effluent from the Jinju wastewater treatment plant (WWTP) in southern part of Korea has recently been strengthened, with a reduction in the acceptable P limit from 2.0 to 0.2 mg/L. Various treatment processes have been introduced and applied to meet the regulation, after use of biological treatments such as conventional activated sludge, anoxic–oxic (A/O), and anaerobic–anoxic–oxic (A2/O) treatments. The present work introduces a hybrid system of A2/O and dissolved air flotation (DAF) treatment to remove P from the effluent. The total capacity of the WWTP is 190,000 m3/d. The dimensions of the DAF basins are 8 m (width), 16 m (length), 4.2 m (height), 6 basins, and the capacity is 2,995 m3/d. The retention time and recycling ratio are 19 min and 15\%, respectively. The surface loading rate is 240 m/d. Operation of the system with A2/O+DAF has already commenced and total P was reduced from 2.18 to 0.03 mg/L. A2/O+DAF treatment improved the mean effluent concentrations of total phosphorus, chemical oxygen demand, and suspended solids by approximately 70, 29, and 27\%, respectively, compared with the corresponding levels in effluent after A2/O treatment alone.

\textbf{Keywords:} Coagulation; Dissolved air flotation; Phosphorous removal

*Corresponding author.

Presented at the 6th International Conference on the “Challenges in Environmental Science and Engineering” (CESE-2013), 29 October—2 November 2013, Daegu, Korea

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.