Nitrogen and phosphorus removal in a novel extra-loop fluidized bed bioreactor (EFBBR)

Yongsheng Lua,b, Christophe Dagotb,*, Michel Bauducc

aSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China, Tel. +86 21 66137748; email: luy7174@shu.edu.cn

bGroupement de Recherche Eau Sol Environnement, Université de Limoges, ESTER, 16 Rue Atlantis, F-87068 Limoges Cedex, France, Tel. +33 555 423697; email: dagot@ensil.unilim.fr (C. Dagot)

cLaboratoire des sciences de l’eau et de l’environnement, Université de Limoges, 123 Avenue Albert Thomas, 87000 Limoges, France, Tel. +33 555 457203; email: mbaudu@unilim.fr

Received 26 January 2014; Accepted 12 April 2014

ABSTRACT

The performance of a novel extra-loop fluidized bed bioreactor (EFBBR) in sequencing batch reactor mode (total 12 h: anaerobic 1.5 h, aerobic 5 h, anoxic 4.5 h, settle 1 h, and idle 1 h) and employing a PVC tube as a carrier medium for the simultaneous carbon, nitrogen, and phosphorus removal from synthetic wastewater is discussed. The EFBBR was operated and the system commissioning and optimization lasted for about 300 d. During the operation, the EFBBR was able to achieve chemical oxygen demand (COD), ammonia nitrogen (NH\textsubscript{4}-N), and phosphorus removal efficiencies of 90, 95, and 100\%, respectively. The results presented that C/N was insignificant for COD removal. At C/P = 33.2, there were productions including NO\textsubscript{2}-N and NO\textsubscript{3}-N. However, at C/P = 10.4, nitrification was restrained with TKN/COD from 0.0805 to 0.139, and phosphorus was eliminated completely. The reactor operation can achieve nitrite accumulation successfully. Therefore, the EFBBR is a novel high-powered equipment for carbon and phosphorus removal simultaneously with a shortcut nitrification–denitrification process.

Keywords: Extra-loop fluidized bed bioreactor (EFBBR); SBR; Shortcut nitrification–denitrification process; Phosphorus removal

*Corresponding author.

Presented at the 6th International Conference on the “Challenges in Environmental Science and Engineering” (CESE-2013), 29 October–2 November 2013, Daegu, Korea

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.