
Desalination and Water Treatment

doi: 10.1080/19443994.2014.915767

54 (2015) 1344–1352 April

Nutrient removal by different plants in wetland roof systems treating domestic wastewater

Phan Thi Hai Van^a, Nguyen Thanh Tin^a, Vo Thi Dieu Hien^a, Thai Minh Quan^a, Bui Xuan Thanh^{a,*}, Vo Thanh Hang^a, Dinh Quoc Tuc^a, Nguyen Phuoc Dan^a, Le Van Khoa^a, Vo Le Phu^a, Nguyen Thanh Son^b, Nguyen Duc Luong^c, Eugene Kwon^d, Changgyu Park^d, Jingyong Jung^d, Injae Yoon^d, Sijin Lee^d

^aFaculty of Environment, Ho Chi Minh City University of Technology (HCMUT), Vietnam Building B9, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam, emails: phanhaivan@gmail.com (P.T.H. Van); thanhtin201@yahoo.com (N.T. Tin); hien.ic.tracodi@gmail.com (V.T.D. Hien); thaiminhquan0909@gmail.com (T.M. Quan); bxthanh@hcmut.edu.vn (B.X. Thanh); hang_vothanh2003@yahoo.com (V.T. Hang); quoctuc@yahoo.com (D.Q. Tuc); npdan@hcmut.edu.vn (N. P. Dan); vkhoa2020@gmail.com (L.V. Khoa); volephu@hcmut.edu.vn (V.L. Phu)

^bCentre for Space and Remote Sensing Research, National Central University, Jhongli, Taoyuan 32001, Taiwan, email: ntsonait@hotmail.com (N.T. Son)

^cInstitute of Environmental Science and Engineering (IESE), National University of Civil Engineering (NUCE), 55 Giai Phong, Hanoi, Vietnam, email: luongnd1@nuce.edu.vn (N.D. Luong)

^dKorea Environment Corporation (KECO), General Environmental Research Complex, Gyeongseo-dong, Seo-gu, Inchon 404-170, South Korea, emails: rossete@naver.com (E. Kwon); cg2020@keco.or.kr (C. Park); kimgiyou@keco.or.kr (J. Jung); yooninjae@keco.or.kr (I. Yoon); leesj@keco.or.kr (S. Lee)

Received 15 January 2014; Accepted 14 April 2014

ABSTRACT

This study evaluated nutrients removal from domestic wastewater by five plants in wetland roof systems (WR). The study plants include $Arachis\ duranensis\ (1)$, $Evolvulus\ alsinoides\ (2)$, $Cosmos\ Bipinnuatus\ (3)$, $Cyperus\ alternifolius\ Linn\ (4)$, and $Philodendron\ hastatum\ (5)$. The WRs were acclimatized at hydraulic loading rates (HLR) of $220\ m^3$ /ha d and operated at HLR of $300\ m^3$ /ha d. The plants (1), (2), (4), and (5) had the ability to grow under the rooftop conditions with domestic wastewater as a nutrient source while the plant (3) was not suitable and dead after $20\ d$ of operation. Generally, $A.\ duranensis\ (1)$ and $C.\ alternifolius\ Linn\ (4)$ were the most suitable plants treating domestic wastewater under the conditions of WR. The average phosphorus removal efficiencies of (1) and (4) were approximately 75 and 89%, respectively, while the average nitrogen removal efficiencies were 69 and 92%. The phosphorus accumulation in plants (1) and (4) during operation was $20.4\ and\ 29.4\%$, respectively, while the nitrogen accumulation was $21.5\ and\ 93\%$. It is concluded that $C.\ alternifolius\ Linn\ (4)$ has best nutrient removal among the study plants under the conditions of shallow bed WR treating domestic wastewater $(24\pm 4\ and\ 2.0\pm 0.4\ kg\ TP/ha\ d)$.

Keywords: Wetland roof; Arachis duranensis; Evolvulus alsinoides; Cosmos Bipinnuatus; Cyperus alternifolius Linn; Philodendron hastatum

Presented at the 6th International Conference on the "Challenges in Environmental Science and Engineering" (CESE-2013), 29 October–2 November 2013, Daegu, Korea

^{*}Corresponding author.