Utilization of self-synthesized ZnO nanoparticles in MPR for industrial dye wastewater treatment using NF and UF membrane

Nur Hanis Hayati Hairoma,c, Abdul Wahab Mohammadb,*, Law Yong Nga, Abdul Amir Hassan Kadhumb

aFaculty of Engineering and Built Environment, Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, emails: nurhanishayati@gmail.com (N.H.H. Hairom), nglawyong@gmail.com (L.Y. Ng)

bFaculty of Engineering and Built Environment, Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, emails: wahabm@eng.ukm.my (A.W. Mohammad), amir@eng.ukm.my (A.A.H. Kadhum)

cFaculty of Engineering Technology, Department of Chemical Engineering Technology, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia

Received 27 December 2013; Accepted 17 April 2014

\textbf{ABSTRACT}

This study attempted to use zinc oxide (ZnO) nanoparticles in membrane photocatalytic reactor (MPR) for industrial dye wastewater treatment. Performance comparison of nanofiltration (NF) and ultrafiltration (UF) in the MPR system were investigated to produce cleaner discharge and to retain the ZnO for reuse. From the results, the optimum operational condition of MPR occurred under pH 11 and 0.1 g L−1 of ZnO loading. NF membrane performance improved after the addition of ZnO nanoparticles in the wastewater; in terms of normalized flux reduction (65\%), colour removal (100\%), chemical oxygen demand (92\%), turbidity reduction (100\%) and total suspended solid rejection (100\%). In contrast, UF membrane showed worse performance, due to the permeation of dye molecules and nanosized ZnO across the UF membrane pores. Membrane characterizations of field emission scanning electron microscopy and energy dispersive X-ray results confirmed that the ZnO nanoparticles and NF membrane application has a great potential for improving MPR system in industrial wastewater treatment.

\textit{Keywords:} Zinc oxide nanoparticles; Membrane photocatalytic reactor; Nanofiltration; Ultrafiltration; Industrial dye wastewater

*Corresponding author.

Presented at the 6th International Conference on the “Challenges in Environmental Science and Engineering” (CESE-2013), 29 October–2 November 2013, Daegu, Korea