Kinetics with optimization studies of nitrogen and organic elimination from wastewater via heterotrophic biomass conversion process

Ayusman Mohanty, Sanak Ray, Asheesh Kumar Yadav, G. Roy Chaudhury*

CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India, Tel. +91 9338810225; email: mohanty.ayusman@gmail.com (A. Mohanty), Tel. +91 9437115485; email: sanakray@gmail.com (S. Ray), Tel. +91 674-2379306; email: asheesh.yadav@gmail.com (A.K. Yadav), Tel. +91 674-2379540; Fax: +91 674-2581637; email: gr_chaudhury@yahoo.com (G.R. Chaudhury)

Received 21 November 2013; Accepted 13 May 2014

ABSTRACT

Heterotrophic biomass conversion (HBC) research was carried out for the removal of N-NH₃ and organic carbon from synthetic wastewater. Ammonium nitrate and glucose were used as the nitrogen and organic carbon source, respectively. In this study, N-NH₃ and organic nutrient concentrations were varied, keeping the biomass concentration invariable. The kinetics followed dual rates, i.e. faster initial rate followed by a slower one. The consumption of N-NH₃ and COD followed first-order kinetics. Kinetic model such as Monod was studied. The pH during the HBC process showed an increasing trend which may be due to heterotrophic nitrification (HN). Parameters like N-NO₃, N₂O, N-NO₂, time, and dissolved oxygen were studied. A part of N-NH₃ utilized for the emission of N₂O may be due to HN. Analyses of variance were carried out for better interpretation of results. Optimization studies were carried out to minimize N₂O emission and maximize N-NH₃ along with COD removal.

Keywords: HBC; Kinetics; Monod; Diffusion; Optimization; Statistics

*Corresponding author.

1944-3994/1944-3986 © 2014 Balaban Desalination Publications. All rights reserved.