Microstructural characteristics and adsorption potential of a zeolitic tuff–metakaolin geopolymer

Mazen Alshaeara,b, Dimitra Zaharakic, Kostas Komnitsasc,*

aDeanship of Academic Research, University of Jordan, Amman 11942, Jordan
bDepartment of Physics, College of Science and Humanitarian Studies, Salman Bin Abdul Aziz University, P.O. Box 83, Alkharij 11942, Saudi Arabia
cSchool of Mineral Resources Engineering, Technical University of Crete, Chania 73100, Greece, Tel. +30 28210 37686; Fax: +30 28210 69554; email: kmni@mred.tuc.gr (K. Komnitsas)

Received 30 May 2014; Accepted 15 June 2014

\begin{abstract}
The aim of this work is to investigate the microstructural characteristics and the adsorption potential of zeolitic tuff–metakaolin (ZM) geopolymers. For the identification of microstructure, X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses were used. XRD showed that mordenite, a major zeolite mineral, disappeared upon geopolymerization, while SEM showed that ZM-geopolymers exhibit a uniform porous matrix consisting of nanoparticles (~40 nm). The adsorption efficiency of ZM-geopolymers was assessed using solutions containing 250 mg/L copper. The experimental results show that the maximum adsorption efficiency (7.8 mg Cu2+/g of adsorbent) is observed at an initial zeolitic tuff/metakaolin ratio of 0.5 which indicates that ZM-geopolymers can be used in environmental applications including the clean-up of industrial effluents and wastewaters.

\textit{Keywords}: Geopolymers; Zeolitic tuff; Metakaolin; Adsorption
\end{abstract}