Adsorption of heavy metals from aqueous solutions by waste coffee residues: kinetics, equilibrium, and thermodynamics

Chung-Hsin Wua,*, Chao-Yin Kuob, Shu-Shian Guanc

aDepartment of Chemical and Materials Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Road, Kaohsiung, Taiwan, Tel. +886 7 3814526, ext. 5158; Fax: +886 7 3830674; email: wuch@kuas.edu.tw

bDepartment of Environmental and Safety Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin, Taiwan

cDepartment of Environmental Engineering, Da-Yeh University, Da-Tsuen, Chang-Hua, Taiwan

Received 26 May 2014; Accepted 18 December 2014

\textbf{ABSTRACT}

Waste coffee residues (WCRs) are used to remove heavy metals (Cu2+, Pb2+, and Zn2+) from aqueous solutions. The surface characteristics of WCRs were analyzed by scanning electron microscopy, specific surface area analysis, zeta-potential analysis, and Fourier-transform infrared spectroscopy. The specific surface area, mean pore diameter, and pH\textsubscript{pzc} of the WCRs were 0.19 m2/g, 14 nm, and 3.5, respectively. Adsorption experiments are performed to evaluate the kinetics, equilibrium, and thermodynamic parameters. The percentage of Cu2+ that was removed from a solution increased as the pH and the WCR dose increased, but it declined as the Cu2+ concentration increased. The adsorption kinetics and equilibrium fit pseudo-second-order and Langmuir models, respectively. At pH 5 and 25\degree C, the maximum adsorption capacities of the WCRs for Cu2+, Pb2+, and Zn2+ were 8.2, 27.6, and 8.0 mg/g, respectively. The \(\Delta H^0\) values for the adsorption of Cu2+, Pb2+, and Zn2+ on WCRs were 9.73, 13.77, and 9.15 kJ/mol, respectively, and the corresponding \(\Delta S^0\) values were 109.4, 127.0, and 96.6 J/mol/K. The adsorption of Cu2+, Pb2+, and Zn2+ on WCRs is an endothermic, spontaneous physisorption process, and the adsorption kinetics is controlled mainly by surface diffusion.

\textbf{Keywords:} Adsorption; Coffee residues; Heavy metals; Kinetics; Equilibrium; Thermodynamics

*Corresponding author.

\copyright 2014 Balaban Desalination Publications. All rights reserved.