Endophytes from *Phragmites* for metal removal: evaluating their metal tolerance, adaptive tolerance behaviour and biosorption efficacy

Carrie Siew Fang Sim, Wei Shang Tan, Adeline Su Yien Ting*

*School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia, Tel. +603 5514 6000, extn. 61725; Fax: +603 5514 6184; emails: carriesim@hotmail.com (C.S.F. Sim), shane.tws89@gmail.com (W.S. Tan), Tel. +603 5514 6105; Fax: +60 603 55146184; emails: adeline.ting@monash.edu, adelsuyien@yahoo.com (A.S.Y. Ting)

Received 14 July 2014; Accepted 24 January 2015

ABSTRACT

This study determined the potential of fungal endophytes as novel group of biosorbents for metal removal. The endophytic fungi were first isolated from *Phragmites*, a plant typically used to treat wastewater or leachate, and screened for tolerance and biosorption potential towards various metals. Results revealed that all 21 endophytes demonstrated tolerance to metals tested (Cd$^{2+}$, Cu$^{2+}$, Cr$^{3+}$, Pb$^{2+}$ and Zn$^{2+}$), with three isolates (*Trichoderma asperellum* Iso11, *Phomopsis* sp. Iso9 and *Saccharicola bicolour* Iso22) showing the most potential. Of the three, *T. asperellum* demonstrated better tolerance and adaptive tolerance behaviour to various metals compared to *Phomopsis* sp. and *S. bicolour* which were unable to adapt to increasing metal concentrations (up to 2,000 mg L$^{-1}$). All three isolates showed similar efficacy in removing metals in single-metal solutions. On the contrary, in multi-metal solutions, *T. asperellum* and *S. bicolour* showed higher affinity to adsorb Cu$^{2+}$, followed by Cr$^{3+}$ and Pb$^{2+}$, while *Phomopsis* sp. had affinity towards metals in the following trend: Cu$^{2+}$ > Pb$^{2+}$ > Cr$^{3+}$. This study is the first to document the metal tolerance and sorption efficacy of endophytes from *Phragmites*.

Keywords: Adaptive behaviour; Biosorption; Endophytes; Metal tolerance; *Phragmites*