Two-stage mesophilic anaerobic digestion from waste activated sludge enhanced by low-temperature thermal hydrolysis

Xiaorong Kang a,*, Yali Liu b, Xin Li b, Yixing Yuan b, Maoan Du b

aSchool of Civil Engineering, Yancheng Institute of Technology, Yancheng 224051, P.R. China, Tel. +86 18305105285; email: feixiang2004@163.com
bSchool of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, P.R. China, Tel. +86 045186282735; emails: liuyali0418@163.com (Y. Liu), lixinharbin@163.com (X. Li), yuanyixingharbin@163.com (Y. Yuan), dumaoanharbin@163.com (M. Du)

Received 15 December 2014; Accepted 21 February 2015

\textbf{ABSTRACT}

Two-stage mesophilic anaerobic digestion of waste activated sludge was conducted to enhance methane production by low-temperature thermal hydrolysis. Two steady stages were evaluated: the first acidogenic stage was operated at sludge retention times of 2 d, and the second methanogenic stage was controlled at hydraulic retention times of 8 d. Thermal hydrolysis results showed that more chemical oxygen demand, proteins and carbohydrates were released from sludge as temperature increased from 50 to 120°C. Protein-like substances were major components from three-dimensional (3D) excitation–emission matrix analysis, and their fluorescence intensities were matched with temperatures. Sludge extracellular structure was disintegrated from scanning electron microscope analysis when the temperature was beyond 80°C. The volatile fatty acids (VFAs) and methane production had positive relation to the soluble organic matters after low-temperature hydrolysis. About 100°C was the suitable temperature for sludge digestion, and corresponding VFAs and biogas productions were 1,672 mg/L and 123 mL/gVSS, respectively.

\textit{Keywords:} Waste activated sludge; Mesophilic anaerobic digestion; Thermal hydrolysis; Methane production

*Corresponding author.

Presented at the 7th International Conference on Challenges in Environmental Science and Engineering (CESE 2014) 12–16 October 2014, Johor Bahru, Malaysia

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.