EDTA- and amine-functionalized graphene oxide as sorbents for Ni(II) removal

Caiyun Zhaoa, Lingjuan Maa, Jinmao Youa, Fengli Qua,b,*, Rodney D. Priestleyb

aCollege of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P.R. China, Tel. +86 537 4456305; emails: caiyun.zhao@126.com (C. Zhao), qflhhn@126.com (L. Ma), jmyou6304@126.com (J. You), fengliquhn@hotmail.com (F. Qu)

bDepartment of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA, Tel. +1 609 258 5721; email: rpriest@princeton.edu (R.D. Priestley)

Received 8 October 2014; Accepted 20 February 2015

ABSTRACT

The adsorption behavior of Ni(II) onto graphene oxide (GO) derivatives N-(trimethoxysilylpropyl) ethylenediaminetriacetic acid-modified GO (EDTA-GO) and 3-Tri-methoxysilylpropyl-diethylene triamine (amine–silane)-modified GO (amine-GO) were investigated. The EDTA and amine groups significantly enhanced the Ni(II) adsorption capacity of GO. The experimental results illustrated that GO-based sorbents could selectively remove Ni(II) from contaminated water with a maximum adsorption capacity of 103 mg/g within 30–45 min. The influence of pH on the adsorption/desorption properties as well as reusability of the modified GO derivatives was also investigated. These results demonstrate the application of modified GO as an effective adsorbent for water protection.

Keywords: Graphene oxide; Adsorption; Nickel