Desalination and Water Treatment www.deswater.com

doi: 10.1080/19443994.2015.1030710

57 (2016) 9136–9147 April

Photocatalysis of THM precursors in reclaimed water: the application of TiO₂ in UV irradiation

Qi Han^a, Yan Wang^{a,*}, Han Yan^a, Baoyu Gao^a, Defang Ma^a, Shenglei Sun^a, Jianya Ling^b, Yongbao Chu^c

^aShandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, No. 27 Shanda Nan Lu, Jinan 250100, Shandong, China, Tel. +86 531 88361812; Fax: +86 531 88364513; email: wangyan_sdjn@aliyun.com (Y. Wang)

^bSchool of Life Science, Shandong University, No. 27 Shanda Nan Lu, Jinan 250100, Shandong, China, Tel. +86 531 88364427; email: lingjian-ya@sdu.edu.cn

^cSchool of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, China, Tel. +86 13854266081; email: chuyongbao@163.com

Received 24 October 2014; Accepted 11 March 2015

ABSTRACT

In this study, ultraviolet (UV) irradiation followed by chlorination was employed for reclaimed water disinfection. In order to reduce trihalomethanes (THMs) from reclaimed water, suspended ${\rm TiO_2}$ (10 mg/L) was added as photocatalyst in UV process to enhance the removal of THM precursors. Reduction of UV absorbance in 254 nm (UV₂₅₄), dissolved organic carbon (DOC), and THMs formation was analyzed under different experimental conditions (exposure time, pH, ${\rm TiO_2}$ doses, and ${\rm TiO_2}$ forms). Excitation–emission matrix spectra technology was also used to investigate the changes of dissolved organic matters properties during UV and UV- ${\rm TiO_2}$ process. Expansion of irradiation time resulted in a remarkable decrease in ${\rm UV_{254}}$ and THM yields, but showed few influence on DOC removal. THMs yield decreased more than 50% with pH increased from 5 to 9 and rise in ${\rm TiO_2}$ dosage also presented a positive effect on photocatalytic disinfection. In addition, a dramatic increase in removal rates of ${\rm UV_{254}}$, DOC, and THMs was observed when ${\rm TiO_2}$ doses were increased from 3 to 15 mg/L. In terms of ${\rm TiO_2}$ form, suspended ${\rm TiO_2}$ exhibited a better removal capacity on ${\rm UV_{254}}$, DOC, and THMs by contrast with ${\rm TiO_2}$ coated on granular active carbon.

Keywords: UV; TiO2; THMs; Photocatalysis; Chlorination

*Corresponding author.