Mechanism of bisphenol A removal by a submerged membrane bioreactor in the treatment of synthetic municipal sewage: staged analyses

Hongwei Zhanga, Yufei Wanga,*, Jie Wangb,c, Yuqian Hed

aSchool of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China, Tel. +86 135 0217 1853; email: zhw@tju.edu.cn (H. Zhang), Tel. +86 139 2043 4951; email: ywan8926@163.com (Y. Wang)

bState Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387, China, Tel. +86 022 8395 5673; email: wangjie@tjpu.edu.cn

cSchool of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China

dWatersiyuan Group Co., Ltd, Shijiazhuang 050011, Hebei, China, Tel. +86 136 5202 9530; email: 136heyuqian@163.com

Received 15 October 2014; Accepted 26 April 2015

\textbf{ABSTRACT}

Bisphenol A (BPA) is a typical endocrine disrupting chemical that potentially jeopardizes body health of human beings. A submerged membrane bioreactor (MBR) has been operated at the laboratory scale for the treatment of synthetic municipal sewage containing BPA. For comprehensive investigation about the effect of hollow fiber microfiltration membrane on BPA removal in membrane bioreactor (MBR) system, staged analyses by environmental scanning electron microscope, BPA filtration tests, and membrane cleaning assessments were conducted. The results showed that BPA, chemical oxygen demand, and ammonia-nitrogen (N-NH\textsubscript{3}) were eliminated effectively, at 90.11, 97, and 95\%, respectively. With the running time extension of MBR, cake layer on the membrane surface got thicker, simultaneously on which cell-like substances marking biofilm formation accumulated. Staged BPA filtration tests demonstrated that with the aggravation of membrane fouling, the effect of cake layer on BPA interception was improved. And from staged membrane cleaning assessments it was found that the contents of BPA and its main degradation products including 4-hydroxybenzoic acid (p-HBA), 4-hydroxyacetophenone (p-HAP), and 4-hydroxybenzaldehyde (p-HBAL) in fouled membrane followed the same growth trend. Most of BPA was captured by the activated sludge. And the effect of biodegradation was enhanced over the running time of the MBR unit.

\textbf{Keywords}: Membrane bioreactor; Bisphenol A; Staged analysis; Adsorption; Biodegradation

*Corresponding author.