Oxidative degradation of Methyl Orange catalyzed by lab prepared nickel hydroxide in aqueous medium

Muhammad Saeeda,*, Shahid Adeela, Mohammad Ilyasb, Muhammad Azhar Shahzada, Muhammad Usmana, Ehsan-ul Haqc, Muhammad Hamayund

aDepartment of Chemistry, Government College University Faisalabad, Allama Iqbal Road Faisalabad 38000 Pakistan, Tel. +92-346-9010903; emails: pkseed2003@yahoo.com (M. Saeed), shahidadeel@gcuf.edu.pk (S. Adeel), masgcuf@hotmail.com (M.A. Shahzad), usm_ca@yahoo.com (M. Usman)

bDepartment of Chemistry, Qurtuba University of Science and Information Technology, Peshawar 25120, Pakistan, email: mohilyas52@yahoo.com

cPCSIR Laboratories Complex, Ferozepur Road, Lahore 54000, Pakistan, email: ehsanpcsir@gmail.com

dDepartment of Chemistry, Women University Azad Jammu & Kashmir, Bagh 12500 Pakistan, email: hamayunf@yahoo.com

Received 14 January 2015; Accepted 14 May 2015

\textbf{ABSTRACT}

This study is focused on oxidative degradation of Methyl Orange, a common azo dye, catalyzed by nickel hydroxide in aqueous solution at 303, 313, 323, and 333 K. Sodium hypochlorite, sodium hydroxide, and nickel sulfate hexahydrate in distilled water were used as starting material for preparation of nickel hydroxide. Pyrex glass batch reactor was used to study the effect of various conditions such as temperature, concentration, agitation, and catalyst dose on catalytic degradation of Methyl Orange in aqueous medium. About 80\% Methyl Orange was degraded in 120 min. Experimental data were subjected to kinetic analysis using CurveExpert software. Degradation reaction was taking place according to Langmuir–Hinshelwood mechanism. According to this mechanism, the reactants adsorb at the surface of catalyst in first step followed by reaction between adsorbed reactants in second step. Adsorption of Methyl Orange on surface of catalyst followed Langmuir adsorption isotherm. Apparent activation energy, true activation energy, and heat of adsorption were determined as 13.2, 32.7 and \(-23.5\) kJ mol\(^{-1}\), respectively.

\textbf{Keywords:} Methyl Orange; Nickel hydroxide; Kinetic analysis; Langmuir–Hinshelwood mechanism; Langmuir adsorption isotherm; Activation energy