Manufacturing of antibiofouling polymeric membranes with bismuth-BAL chelate (BisBAL)

Suleyman Oveza,b, Turker Turkena,b, Borte Kose-Mutlua,b, Selin Okatana,b, Gamze Durmaza,b, Mehmet C. Guclua,b, Serkan Guclua,b, Shankar Chellamc, Ismail Koyuncua,b,*

aCivil Engineering Faculty, Environmental Engineering Department, Istanbul Technical University, Istanbul, Turkey, Tel. +90 543 726 98 90; email: ovez@itu.edu.tr (S. Ovez), Tel. +90 505 554 54 52; email: turken@itu.edu.tr (T. Turken), Tel. +90 554 521 36 37; email: kosebo@itu.edu.tr (B. Kose-Mutlu), Tel. +90 506 428 03 46; email: eylulselin09@hotmail.com (S. Okatan), Tel. +90 537 563 90 31; email: gamze989@hotmail.com (G. Durmaz), Tel. +90 534 264 34 32; email: guclu.mehmetcan@gmail.com (M.C. Guclu), Tel. +90 536 977 93 67; email: gucluse@hotmail.com (S. Guclu), Tel. +90 505 933 17 21; email: koyuncu@itu.edu.tr (I. Koyuncu)

bNational Research Center on Membrane Technologies (MEM-TEK), Istanbul, Turkey

cCivil and Environmental Engineering Department, University of Houston, Houston, Texas, email: schellam@central.UH.EDU

Received 20 March 2014; Accepted 20 May 2015

\section*{ABSTRACT}

Recent developments indicate an increase in demand of water supply and protection of natural water source quality with a requirement of advanced wastewater treatment systems. Formation of biofilms on the membrane surfaces and in the pores of membranes which are caused by extracellular polymeric substances and soluble microbial products has been identified as the main source of biofouling in membrane operation. The secretion of total polysaccharides and proteins by micro-organisms can be lowered when they are exposed to the bismuth-BAL chelate (BisBAL) at near minimum inhibition concentration. Our study aimed at controlling the population and co-products of micro-organisms that cause biofouling. After successful studies with the inhibition of \textit{Escherichia coli} and \textit{Streptococcus pyogenes} in activated sludge, BisBAL-containing membranes were fabricated. The effect of BisBAL on membrane performance was also observed. FTIR, SEM, contact angle, and surface roughness analyses were performed for the characterization of the membranes. Originality of this study comes from the usage of BisBAL for the first time for membrane synthesis.

\textit{Keywords:} Antibiofouling membrane; Membrane manufacturing; PSf membranes; PES membranes; BisBAL; Xanthan gum; Membrane resistances

*Corresponding author.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.