Photo-corrosion inhibition of Ag$_3$PO$_4$ by polyaniline coating

Yunfan Zhanga, Rengaraj Selvaraj$^{b, *}$, Younghun Kimc, Mika Sillanpääa,*, Cheuk-Wai Taid

aLaboratory of Green Chemistry, Faculty of Technology, Lappeenranta University of Technology, Mikkeli FI-50100, Finland, email: Mika.Sillanpaa@lut.fi
bDepartment of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman, Tel. +968 2414 2436; email: srengaraj1971@yahoo.com
cDepartment of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea
dArrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm S-106 91, Sweden

Received 8 April 2015; Accepted 30 May 2015

ABSTRACT

In this paper, polyaniline-coated silver phosphate has been successfully prepared via a facile chemisorption method in order to improve the stability of Ag$_3$PO$_4$ under light irradiation. The crystalline phase, band gap energy, and microstructure of the obtained PANI/Ag$_3$PO$_4$ composites were characterized by X-ray diffraction, UV–vis diffuse reflection spectroscopy, scanning electron microscopy, and transmission electron microscopy, respectively. The photocatalytic degradation of methylene blue was performed to test the activities of PANI/Ag$_3$PO$_4$ composites with different coating amounts and the results indicate that the stabilities of PANI/Ag$_3$PO$_4$ composites were successfully enhanced. The correlation between photocatalytic performance and the properties of PANI/Ag$_3$PO$_4$ composites is discussed in detail.

Keywords: Polyaniline; Ag$_3$PO$_4$; Photocatalyst; Photo-corrosion inhibition; Structural characterization

*Corresponding authors.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.