Potential for iron release in drinking water distribution system: a case study of Hamedan city, Iran

Alireza Mesdaghiniaa, Ramin Nabizadeh Nodehib, Simin Nasseria, Syed A. Imranc, Mohammad Taghi Samadid, Mahdi Hadia,*

aCenter for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, 8th floor, Gol Building, North Kargar St., Enghelab Sq., Tehran, Iran, Tel. +98 2188978399; email: mesdaghinia@tums.ac.ir (A. Mesdaghinia), Tel. +98 2188978396; email: naserise@tums.ac.ir (S. Nasseri), Tel. +98 9189061738; Fax: +98 2188978398; email: hadi_rfm@yahoo.com (M. Hadi)

bDepartment of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, 5th floor, Poor-e-Sina St., Tehran, Iran, Tel. +98 2188954914; email: rnabizadeh@tums.ac.ir

cAquastructure Solutions Inc., 150A—2 Research Drive, Regina, SK S4S 7H9, Canada, Tel. +1 3065708557; email: syed.imran@aquastructure.ca

dSchool of Public Health, Health Sciences Research Center, Hamadan University of Medical Sciences, Mahdiyeh St., Hamedan, Iran, Tel. +98 8118260661; email: samadi@umsha.ac.ir

Received 16 October 2014; Accepted 18 June 2015

\textbf{ABSTRACT}

Blending of water from different sources into an urban drinking water distribution system can have unintended impacts, such as corrosion and/or release of corrosion by-products from pipe surfaces. Hamedan, a city in west Iran, receives water from four different sources that have different physical and chemical characteristics. The potential for iron release from iron distribution pipes due to \textit{in situ} blending of different sources was investigated in this study. A dedicated software was developed to calculate the corrosion indices of different blends expected in different zones of Hamedan’s water distribution system. The calculated corrosion indices, and iron release were verified and correlated to actual conditions through water sampling conducted in different zones of the city. The Langelier index (LI), Ryznar stability index (RSI or RI), Puckorius scaling index (PSI), and the calcium carbonate precipitation potential were found to be -0.60 ± 0.30, 8.63 ± 0.57, 8.18 ± 0.34, and -10.95 ± 6.9 mg CaCO$_3$/L, respectively. Alkalinity, pH, and carbonate ion were identified as the important parameters that have a role in the control of iron release. Significant linear correlations of LI, RI, and PSI to iron concentration were observed in samples collected from different zones of the distribution system. The spatial correlation between iron concentration and corrosion indices in different zones of the water distribution system was determined using ordinary Kriging interpolation. These indices indicated a wide variation of corrosive potential in different zones of the distribution system. Therefore, these corrosion indices can be used to estimate, monitor, and minimize the potential for iron release from distribution systems.

\textit{Keywords:} Corrosion index; Drinking water; Iron release; Water distribution system

*Corresponding author.

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.