Application of eggplant peels powder for the removal of oil from produced water

Abdul S. Gulistana, Taleb H. Ibrahimb,*, Mustafa I. Khamisc, Yehya ElSayedc

aFauji Fertilizers Company Ltd., Manufacturing and Operation Division, Machhi Goth, Sadiqabad, Rahim-yar-Khan, Pakistan, Tel. +92 333 817 9715; email: Sami_Gulistan@ffc.com.pk
bDepartment of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, Tel. +971 6 515 2460; email: italeb@aus.edu
cDepartment of Chemistry, Biology and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, Tel. +971 6 515 4751; email: mkhamis@aus.edu (M.I. Khamis), Tel. +971 6 515 2576; email: yelsayed@aus.edu (Y. ElSayed)

Received 8 November 2015; Accepted 6 December 2015

ABSTRACT

The removal efficiency of oil from simulated samples of produced water (SPW) was studied using a low-cost adsorbent eggplant peel powder (EPP). The effects of pH, adsorbent dosage, contact time, and temperature on the removal efficiency were investigated. The optimum conditions for maximum removal of oil from produced water (PW) are found to be: pH 10.00, adsorbent dosage = 1.75 g/L, contact time = 40 min, and temperature = 55˚C. The results showed that the removal efficiency increases with increasing adsorbent dosage, salinity, and pH. The maximum removal efficiency of oil on EEP, at the optimum condition, is greater than 90% by weight. The study showed that EPP is a fast and excellent adsorbent for this oil removal. The crude oil adsorption on EPP is found to follow Langmuir adsorption isotherm, whereas the adsorption kinetics is best described by Pseudo-second-order kinetic model.

Keywords: Produced water; Eggplant peel; Biosorbent; Equilibrium isotherms; Kinetic model; Crude oil

*Corresponding author.

Presented at the 3rd International Conference on Water, Energy and Environment (ICWEE) 24–26 March 2015, Sharjah, United Arab Emirates

1944-3994/1944-3986 © 2015 Balaban Desalination Publications. All rights reserved.