Potential capability of natural biosorbents: *Diplotaxis harra* and *Glebionis coronaria* L. on the removal efficiency of dyes from aqueous solutions

Hanane Tounsadia,b, Abderrahim Khalidia, Mohamed Abdennourib, Noureddine Barkab,*

aFSTM, Laboratoire d’Electrochimie, Chimie Physique, Bio-organique et Analytique (LECPBA), Université Hassan II Mohammedia Casablanca, BP 146, Mohammedia, Morocco, Tel. +212 645 20 85 64; email: hananetounsadi@gmail.com (H. Tounsadi), Tel. +212 661 64 09 93; email: khalidabderrahim1@gmail.com (A. Khalidi)

bLaboratoire des Sciences des Matériaux, des Milieux et de la Modélisation (LS3 M), Univ Hassan 1, BP 145, Khouribga 25000 Morocco, Tel. +212 667 66 90 39, email: abdennourimohamed@yahoo.fr (M. Abdennouri), Tel. +212 661 66 66 22; Fax: +212 523 49 03 54; email: barkanoureddine@yahoo.fr (N. Barka)

Received 19 September 2014; Accepted 29 July 2015

ABSTRACT

This study focuses on the use of natural biomaterials as a good alternative for dyes' removal from aqueous solutions. For this purpose, two local abundant plants *Diplotaxis harra* (*D. harra*) and *Glebionis coronaria* L. (*G. coronaria*) were chosen for the biosorption of methylene blue (MB) as a reference dye molecule due to its potential risk toward the environment and ecosystems, and malachite green (MG) representative of textile dyes. Biosorption experiments were carried out in batch mode as a function of solution pH, biosorbent dosage, contact time, initial dye concentration, and temperature. The experimental results show that the process is very rapid and the biosorption yield increases with an increase in the biosorbent dosage. Maximum biosorption capacity occurred at basic pH medium. The temperature doesn’t have much influence on the biosorption yield. Kinetic data were analyzed using pseudo-first and pseudo-second kinetic orders. Equilibrium data were correlated to Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models. The best fit was obtained by Langmuir model with a maximum monolayer biosorption capacity of 185.59 and 64.37 mg/g in the case of *D. harra*, 258.76 and 117.32 mg/g in the case of *G. coronaria* L., respectively, for MB and MG.

Keywords: Biosorption; Diplotaxis harra; Glebionis coronaria L.; Kinetics; Equilibrium